(5805 articles):

Clive Price-Jones 
Diego Meozzi 
Paola Arosio 
Philip Hansen 
Wolf Thandoy 

If you think our news service is a valuable resource, please consider a donation. Select your currency and click the PayPal button:

Main Index

Archaeo News 

21 September 2008
Research pushes back crop development 10,000 years

Until recently researchers believed the story of the origin of agriculture was one of a relatively sudden appearance of plant cultivation in the Near East around 10,000 years ago spreading quickly into Europe and dovetailing conveniently with ideas about how quickly language and population genes spread from the Near East to Europe. Initially, genetics appeared to support this idea but now cracks are beginning to appear in the evidence underpinning that model. Now a team led by Dr Robin Allaby from the University of Warwick have developed a new mathematical model that shows how plant agriculture actually began much earlier than first thought. It also shows that useful gene types could have actually taken thousands of years to become stable.
     Up till now researchers believed in a rapid establishment of efficient agriculture which came about as artificial selection was easily able to dominate natural plant selection, and, crucially, as a consequence they thought most crops came from a single location and single domestication event. However recent archaeological evidence has already begun to undermine this model pushing back the date of the first appearance of plant agriculture. The best example of this being the archaeological site Ohalo II in Syria where more than 90,000 plant fragments from 23,000 years ago show that wild cereals were being gathered over 10,000 years earlier than previously thought, and before the last glacial maximum (18,000-15,000 years ago).
     The field of Archaeobotany is also producing further evidence to undermine the quick development model. The tough rachis mutant is caused by a single recessive allele (one gene on a pair or group of genes). Studies has shown that the tough rachis mutant appeared some 9,250 years ago and had not reached fixation over 3,000 years later even after the spread of agriculture into Europe was well underway. Studies like these have shown that the rise of the domestication syndrome was a slow process and that plant traits appeared in slow sequence, not together over a short period of time.
     Genome wide surveys of crops such as einkorn and barley that in the past that have suggested a single origin from a narrow geographical range, supporting the rapid establishment view, have long been in conflict with other gene studies. The most notable conflict is in the case of barley for which there is a large body of evidence that suggests more than one common ancestor was used in its development.
     These challenges to the fast model of agricultural development need a new model to explain how and why the development was so slow and demonstrate why artificial selection of just one plant type does not have the expected quick result. This computer model has now been provided by Dr Robin Allaby and his team at the University of Warwick, the Institute of Archaeology, University College London, and Manchester Interdisciplinary Biocentre.
     Their paper used computer simulations that showed that over time a cultivated population will become monophyletic (settle into one stable species) at a rate proportional to its population size as compared various gene variations in the wild populations. They found this rate of change matched closely the 3000 years it took the tough rachis mutant to become established. This mathematical model also more supportive of a longer complex origin of plants through cross breeding of a number of attempts at domestication rather than a single plant type being selectively bred and from a single useful mutation that is selectively grown quickly out paces the benefits natural selection.
     Dr Robin Allaby says: "Domestication was a complex process and can now be viewed more legitimately as the paragon of evolutionary process that Darwin originally recognized. There are many interacting factors involved that we know about operating on a wide range of levels from the gene to the farmer and climate the challenge is to integrate them into a single story."

Source: Warwick University (20 September 2008)

Share this webpage:

Copyright Statement
Publishing system powered by Movable Type 2.63